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Abstract: Cardiovascular disease, stroke and cirrhosis are diseases that pose a major health threat 
worldwide. This study carries out data-driven disease risk prediction and association analysis based 
on three disease datasets. In the first step, the stroke, heart disease and cirrhosis datasets were 
systematically preprocessed, including outlier processing based on the K-S test, spline function 
interpolation of missing values, and standardization and visual analysis. Through correlation 
analysis and chi-square test, the key influencing factors such as age, ST-segment depression, and 
albumin were identified. In the second step, a logistic regression-XGBoost integrated model was 
constructed to predict the prevalence probability of three types of diseases, and the model 
performance was evaluated through accuracy, AUC-ROC and other indicators, among which the 
accuracy of logistic regression for heart disease prediction reached 68%, and XGBoost's 
performance in the multi-classification task of liver cirrhosis needs to be improved. The results 
showed that the probability of heart disease-cirrhosis complications reached 83.33% in the high-risk 
group and 25.75% in the high-risk group, revealing a strong correlation between diseases. This 
study provides data support and method reference for multi-disease risk prediction and collaborative 
prevention and control. 

1. Introduction 
In the context of global public health governance, health damage caused by non-communicable 

diseases continues to rise, among which cardiovascular disease, stroke and cirrhosis constitute the 
three key diseases that threaten the quality of human life[1][2]. At present, cubes covering the 
above three diseases have gradually accumulated, providing basic support for analyzing the 
occurrence of diseases and mining influencing factors from the data level[3][4]. 

This study aims to explore the risk mechanism of the three types of diseases through big data 
analysis technology, construct an accurate prediction model, and reveal their comorbidity 
characteristics[5]. In this paper, systematic preprocessing and statistical analysis of the three disease 
datasets were carried out to identify the key influencing factors[6]. Then, a logistic regression-
XGBoost integrated model is constructed for disease prediction, and the model performance is 
evaluated[7]. The Bayesian network model is further used to explore the probability and association 
pattern of concurrency between diseases[8]. Relevant research can provide a scientific basis for 
early disease early warning, risk stratification and comprehensive prevention and control, and has 
important theoretical and practical value[9]. 

In recent years, many scholars have conducted extensive research on disease prediction and 
association analysis[10]. For example, Chen and Guestrin proposed the XGBoost algorithm, which 
excels in structured data prediction[11][12]. Koller and Friedman system expounded the application 
of Bayesian network in probabilistic reasoning[13][14]. The Scikit-learn library developed by 
Pedregosa et al. provides efficient implementation for models such as logistic regression[15][16]. In 
addition, D'Agostino et al. established the Framingham risk scoring model in terms of 
cardiovascular disease risk prediction[17][18]. In the prognosis assessment of liver cirrhosis, the 
Model for End-Stage Liver Disease scoring system is widely used. These studies provide an 
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important methodological basis for this paper[19][20]. 

2. Model creation, solution and discussion 
2.1. Model establishment 
2.1.1. Data preprocessing and feature extraction 

Firstly, the datasets of the three diseases were systematically cleaned and preprocessed. The K-S 
test method was used to detect the outliers, and the statistics were: 

max | ( ) ( ) |x nD F x F x= −                                                  (1) 

Among them, ( )nF x is the empirical distribution function, and ( )F x  is the theoretical 
distribution function. 

Impute missing values using a spline function: 
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Perform Z-score normalization: 
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The categorical variables are encoded with unique heat. Finally, the key influencing factors of 
various diseases were identified by Pearson correlation coefficient and chi-square test. 

2.1.2. Logistic regression-XGBoost ensemble prediction model 
Logistic regression maps linear combinations to disease probabilities through the Sigmoid 

function: 
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Its parameters are solved by maximum likelihood estimation.  
XGBoost is a gradient lifting tree ensemble model with a predicted output of: 
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The objective function includes the loss function and the regular term: 
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Optimize the tree structure through Taylor expansion and the greedy algorithm. Finally, integrate 
the results of logistic regression and XGBoost to enhance prediction robustness. 

2.1.3. Bayesian network comorbidity probability model 
Bayesian networks are a probabilistic graph model used to represent dependencies between 

variables. Based on the common characteristics of preprocessing (such as age, gender, blood 
pressure, blood glucose, etc.), the network structure is constructed, and the node relationship is 
quantified by the conditional probability table. For the probability of disease complication, the 
chain rule is used to calculate: 

( , , ) ( ) ( | ) ( | , )P A B C P A P B A P C A B= ⋅ ⋅                                    (7) 

Among them, ,  ,  A B C represents the disease status of stroke, heart disease, and liver cirrhosis 
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respectively. The posterior probability of the concurrent occurrence of any two or three diseases is 
calculated by inference algorithms. 

2.2. Model Solution and Results 
2.2.1.  Step 1 model solution results 

Table 1Three key disease factors affect the results and chi-square values 
Disease Key numerical variables (correlation 

coefficients) 
Key categorical variables (significant 

chi-square test) 
Stroke Age (0.2453), History of heart disease 

(0.1349) 
Marital status, type of job, smoking 

status 
Heart disease ST segment depression (0.4081), 

maximum heart rate (-0.4004) 
ST-segment slope, type of chest pain, 

exercise angina 
Cirrhosis of the 

liver 
Days of disease duration (-0.36), albumin 

(-0.30) 
Ascites, hepatomegaly, spider nevus, 

edema 
The results of Table 1 show that there are significant differences in the key influencing factors of 

different types of diseases. For stroke, age (r=0.245) and history of heart disease (r=0.135) were the 
main numerical risk factors, and their occurrence was significantly correlated with social behavioral 
factors such as marital status, job type, and smoking status. The identification of heart disease is 
highly dependent on ECG indicators, in which ST-segment depression shows a strong positive 
correlation (r=0.408), while maximal heart rate shows a strong negative correlation (r=-0.400). In 
addition, classification features such as ST-segment slope, chest pain type, and exercise angina are 
key clinical discriminants. In cirrhosis, the number of days (r=-0.36) and albumin level (r=-0.30) 
are important laboratory and course indicators, while signs such as ascites, hepatomegaly, spider 
nevus, and edema are highly significant clinical classification manifestations. 

2.2.2. Step 2 model solution results 
The performance of the logistic regression and XGBoost ensemble model on the test set is as 

follows: 
Table 2 Disease prediction model performance 

Disease Model Accuracy AUC-ROC 
Heart disease Logistic Regression 0.68 0.69 

Stroke Logistic Regression 0.94 0.84 
Cirrhosis of the liver XGBoost 0.39 0.43–0.69 
The specific results are shown in Table 2. In the prediction of heart disease, the logistic 

regression model achieved an accuracy of 0.68 and an AUC-ROC value of 0.69, indicating that the 
model has a certain discriminant ability, but its performance is still at a moderate level. In contrast, 
logistic regression performed well in the stroke prediction task, with an accuracy of 0.94 and an 
AUC-ROC of 0.84, indicating that the selected features (such as age, cardiac history, and social 
behavior variables) could better distinguish the risk of stroke, and the modeling task was relatively 
clear. 

2.2.3. Step 3 model solution results 
The Bayesian network model calculates the probability of disease comorbidity as follows: 

Table 3 The probability of complications of the three diseases 
Concurrency type Probability of high-

risk group (%) 
Probability of medium-

risk group (%) 
Probability of low-

risk group (%) 
Stroke - heart disease 19.78 0.56 0 

Stroke - cirrhosis 28.98 1.38 0 
Heart disease - cirrhosis 83.33 48.55 32.26 

Three diseases are 
complicated 

25.75 0.72 0 
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According to the results of Table 3, the probability of heart disease-liver cirrhosis in the high-
risk group was as high as 83.33%, which was significantly higher than that of other complication 
types, suggesting that the two diseases may have a strong common basis in terms of pathological 
mechanism, risk factors or lifestyle. The probability of stroke-cirrhosis is 28.98%, which is also at a 
high level. It is worth noting that even in the medium-risk group, the probability of heart disease-
cirrhosis complications is still 48.55%, and the probability of complications in the low-risk group is 
32.26%, indicating that this complication combination is more common in different risk groups and 
should be used as the focus of clinical monitoring and health management. 

2.3. Results and discussion 
Through systematic data analysis and modeling, the key influencing factors, predictive 

performance and comorbidity patterns of the three types of diseases were revealed. In terms of 
influencing factors, age, ST-segment depression, albumin and other indicators have strong 
predictive power, which is consistent with clinical cognition. In predictive modeling, logistic 
regression is stable and suitable as a baseline model. XGBoost needs to further optimize features 
and parameters in complex multi-classification tasks. In the comorbidity analysis, Bayesian 
networks clearly demonstrate the probabilistic dependence between diseases, especially the high 
complication probability of heart disease and liver cirrhosis, suggesting that joint screening and 
management need to be strengthened in clinical practice. Overall, the combination of the integrated 
model and the probability graph model provides an interpretable and scalable analysis framework 
for multi-disease risk prediction. 

3. Conclusion  
This study focuses on three major non-communicable diseases, namely cardiovascular disease, 

stroke and cirrhosis, from data preprocessing, key factor identification, disease prediction to 
comorbidity probability analysis. In the first step, the key influencing factors such as age, ST 
segment characteristics, and albumin were clarified through the K-S test, spline interpolation and 
statistical test, which provided an index basis for risk identification. In the second step, a logistic 
regression-XGBoost ensemble model is constructed, which achieves good results in the prediction 
of heart disease and stroke, and verifies the effectiveness of ensemble learning in disease prediction. 
In the multi-classification task of liver cirrhosis, the model performance indicates that more features 
and structural optimization need to be introduced. The third step is to construct a comorbidity 
probability model based on Bayesian network, which quantitatively reveals the strength of the 
association between diseases, especially the comorbidity probability of heart disease and liver 
cirrhosis in high-risk groups exceeds 80%, providing data support for joint prevention and control. 

The main contributions of this study are: proposing a disease analysis process that combines 
traditional statistical methods and machine learning models; The systematic exploration from single 
disease prediction to multi-disease association has been realized. It provides data-based risk 
stratification and prevention and control recommendations for public health decision-making. 
However, there are still certain limitations in the research, such as a single data source, limited 
sample size, and uneven model performance in complex multi-classification scenarios. In the future, 
we can consider introducing more heterogeneous data sources, combining deep learning models to 
improve prediction accuracy, expanding the association analysis to more disease types, and 
promoting the pilot application of models in clinical practice. 
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